ISCAR is the largest of the 15 companies comprising IMC (International Metalworking Companies). Together, they supply a dynamic comprehensive line of precision carbide metalworking tools. These companies produce a wide range of carbide inserts, carbide endmills, and cutting tools, covering most metal cutting applications. IMC also provides engineering and manufacturing solutions to major industries throughout the world. Many innovative products, designed especially for customer requirements, have made IMC a world leader in major manufacturing industries such as automotive, aerospace, and die & mold production.
Several decades ago, the introduction of machine tools with significantly increased rotary and linear velocities was the success to efficient high-speed machining (HSM) methods. Peel milling, also known as slicing, was one of these methods. The main principle of peel milling is its high depth of cut (usually, no more than five-tool diameters) when coupled with a low width of cut (typically, up to 0.2 of a tool diameter). This combination features significant advantages. Decreasing the width of cut reduces heat load on a cutting edge and allows increasing cutting speed. In peel milling, the cutting speed can be higher when compared with traditional milling methods. The low width of cut significantly diminishes the radial component of a cutting force, which causes mill bending and vibrations. This ensures high operational stability and facilitates an increased depth of cut.
Radial chip thinning enables higher feeds to maintain the required accurate chip thickness. Therefore, milling with a small radial engagement and a substantial depth of cut performed at high cutting speeds and feed rates is a good cause for improving machining productivity. Moreover, such a machining method provides gradual, uniformly distributed wear along the whole cutting edge, thus increasing tool life.
Peel milling has proven to be productive in milling deep shoulders and wide edges. The slicing technique is successfully applied to rest milling – a machining process where a small diameter tool cuts various hard-to-reach areas, such as cavity corners.
The advance of computer numerical control (CNC) and computer-aided manufacturing (CAM) systems have generated further improvement: trochoidal milling with a complicated tool trajectory instead of a linear feed motion – suitable for peel milling. In mathematics, a trochoid is the curve, generated by the point of a circle rolling along a guide without sliding. In trochoidal milling, a cutting tool moves along a curve slicing thin and slim material layers. Commonly, the curve is a circular arc (semicircle) and the tool returns to the initial point by the arc chord and then repeats the path with a small stepover. In this case, the tool path looks like the letter "D". Milling along the curvilinear trajectory facilitates constant loading of a cutting edge and eliminates a sharp increase in load when entering the material.
In addition to the D-shaped path that is now considered "classical", today, most advanced machines with high-end control systems are much more complex. Trochoidal tool trajectories minimize non-cutting time and optimize machine unit motions.
Talk to Us!
Leave a reply
Your email address will not be published. Required fields are marked *